Login / Signup

Mitofusin 2 but not mitofusin 1 mediates Bcl-XL-induced mitochondrial aggregation.

Mengyan DuSi YuWenhua SuMengxin ZhaoFangfang YangYangpei LiuZihao MaiYong WangXiaoping WangTongsheng Chen
Published in: Journal of cell science (2020)
Bcl-2 family proteins, as central players of the apoptotic program, participate in regulation of the mitochondrial network. Here, a quantitative live-cell fluorescence resonance energy transfer (FRET) two-hybrid assay was used to confirm the homo-/hetero-oligomerization of mitofusins 2 and 1 (MFN2 and MFN1), and also demonstrate the binding of MFN2 to MFN1 with 1:1 stoichiometry. A FRET two-hybrid assay for living cells co-expressing CFP-labeled Bcl-XL (an anti-apoptotic Bcl-2 family protein encoded by BCL2L1) and YFP-labeled MFN2 or MFN1 demonstrated the binding of MFN2 or MFN1 to Bcl-XL with 1:1 stoichiometry. Neither MFN2 nor MFN1 bound with monomeric Bax in healthy cells, but both MFN2 and MFN1 bind to punctate Bax (pro-apoptotic Bcl-2 family protein) during apoptosis. Oligomerized Bak (also known as BAK1; a pro-apoptotic Bcl-2 family protein) only associated with MFN1 but not MFN2. Moreover, co-expression of Bcl-XL with MFN2 or MFN1 had the same anti-apoptotic effect as the expression of Bcl-XL alone to staurosporine-induced apoptosis, indicating the Bcl-XL has its full anti-apoptotic ability when complexed with MFN2 or MFN1. However, knockdown of MFN2 but not MFN1 reduced mitochondrial aggregation induced by overexpression of Bcl-XL, indicating that MFN2 but not MFN1 mediates Bcl-XL-induced mitochondrial aggregation.
Keyphrases