Login / Signup

Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites.

Joshua G PembertonYeun Ju KimTamas Balla
Published in: Traffic (Copenhagen, Denmark) (2019)
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Keyphrases