Risk factors and clinical prediction formula for the evaluation of obstructive sleep apnea in Asian adults.
Do-Yang ParkJi-Su KimBumhee ParkHyun Jun KimPublished in: PloS one (2021)
Obstructive sleep apnea is a highly prevalent cyclic repetitive hypoxia-normoxia respiratory sleep disorder characterized by intermittent upper-airway collapse. It is mainly diagnosed using in-laboratory polysomnography. However, the time-spatial constraints of this procedure limit its application. To overcome these limitations, there have been studies aiming to develop clinical prediction formulas for screening of obstructive sleep apnea using the risk factors for this disorder. However, the applicability of the formula is restricted by the group specific factors included in it. Therefore, we aimed to assess the risk factors for obstructive sleep apnea and develop clinical prediction formulas, which can be used in different situations, for screening and assessing this disorder. We enrolled 3,432 Asian adult participants with suspected obstructive sleep apnea who had successfully undergone in-laboratory polysomnography. All parameters were evaluated using correlation analysis and logistic regression. Among them, age, sex, hypertension, diabetes mellitus, anthropometric factors, Berlin questionnaire and Epworth Sleepiness Scale scores, and anatomical tonsil and tongue position were significantly associated with obstructive sleep apnea. To develop the clinical formulas for obstructive sleep apnea, the participants were divided into the development (n = 2,516) and validation cohorts (n = 916) based on the sleep laboratory visiting date. We developed and selected 13 formulas and divided them into those with and without physical examination based on the ease of application; subsequently, we selected suitable formulas based on the statistical analysis and clinical applicability (formula including physical exam: sensitivity, 0.776; specificity, 0.757; and AUC, 0.835; formula without physical exam: sensitivity, 0.749; specificity, 0.770; and AUC, 0.839). Analysis of the validation cohort with developed formulas showed that these models and formula had sufficient performance and goodness of fit of model. These tools can effectively utilize medical resources for obstructive sleep apnea screening in various situations.
Keyphrases
- obstructive sleep apnea
- positive airway pressure
- sleep apnea
- physical activity
- risk factors
- human milk
- healthcare
- blood pressure
- young adults
- adipose tissue
- minimally invasive
- mental health
- preterm infants
- skeletal muscle
- type diabetes
- cross sectional
- insulin resistance
- pulmonary embolism
- data analysis
- metabolic syndrome
- low birth weight