Immunohistochemical Expression of Platelet-Derived Growth Factor Receptor β (PDGFR-β) in Canine Cutaneous Peripheral Nerve Sheath Tumors: A Preliminary Study.
Catarina Sofia Aluai-CunhaAugusto MatosIrina AmorimFátima CarvalhoAlexandra RêmaAndreia Alexandra Ferreira SantosPublished in: Veterinary sciences (2022)
As in humans, the prevalence of tumors in companion animals is increasing dramatically and there is a strong need for research on new pharmacological agents particularly for the treatment of those tumors that are resistant to conventional chemotherapy agents such as soft tissue sarcomas (STS). Because malignant (MPNST) and benign peripheral nerve sheath tumors (BPNST) are relatively common STS in dogs, the aim of this retrospective study was to evaluate the immunohistochemical (IHC) expression of PDGFR-β, contributing to its characterization as a potential target for their treatment. A total of 19 samples were included, 9 histologically classified as benign and the other 10 as malignant. The results showed diffuse immunoexpression in the cytoplasm of neoplastic cells. Six (66.7%) BPNST expressed the receptor in less than 25% of neoplastic cells and only three (33.3%) exhibited labelling in more than 25% of neoplastic cells. In contrast, all MPNST expressed PDGFR-β, and in 8 (80%) of these samples, the receptor was expressed in more than 25% of neoplastic cells, and only 2 (20%) cases expressed the receptor in less than 25% of neoplastic cells. PDGFR-β expression was significantly higher in MPNST and larger tumors, suggesting that drugs able to inhibit the activity of this tyrosine kinase receptor, such as toceranib, may be considered in the approach of unresectable tumors and/or in the context of adjuvant or neoadjuvant therapies.
Keyphrases
- induced apoptosis
- cell cycle arrest
- peripheral nerve
- tyrosine kinase
- poor prognosis
- growth factor
- binding protein
- magnetic resonance imaging
- magnetic resonance
- epidermal growth factor receptor
- locally advanced
- oxidative stress
- cell death
- lymph node
- computed tomography
- signaling pathway
- cell proliferation
- squamous cell carcinoma
- rectal cancer
- low grade
- high grade
- radiation therapy
- drug induced