Login / Signup

The Applicability of Die Cast A356 Alloy to Additive Friction Stir Deposition at Various Feeding Speeds.

Bandar AlzahraniMohamed M El-Sayed SelemanMohamed M Z AhmedEbtessam ElfishawyAdham M Z AhmedKamel TouilebNabil JouiniMohamed I A Habba
Published in: Materials (Basel, Switzerland) (2021)
In the current investigation, additive friction stir-deposition (AFS-D) of as-cast hypoeutectic A356 Al alloy was conducted. The effect of feeding speeds of 3, 4, and 5 mm/min at a constant rotational speed of 1200 rpm on the macrostructure, microstructure, and hardness of the additive manufacturing parts (AMPs) was investigated. Various techniques (OM, SEM, and XRD) were used to evaluate grain microstructure, presence phases, and intermetallics for the as-cast material and the AMPs. The results showed that the friction stir deposition technique successfully produced sound additive manufactured parts at all the applied feeding speeds. The friction stir deposition process significantly improved the microstructure of the as-cast alloy by eliminating porosity and refining the dendritic α-Al grains, eutectic Si phase, and the primary Si plates in addition to intermetallic fragmentation. The mean values of the grain size of the produced AMPs at the feeding speeds of 3, 4, and 5 mm/min were 0.62 ± 0.1, 1.54 ± 0.2, and 2.40 ± 0.15 µm, respectively, compared to the grain size value of 30.85 ± 2 for the as-cast alloy. The AMPs exhibited higher hardness values than the as-cast A356 alloy. The as-cast A356 alloy showed highly scattered hardness values between 55 and 75.8 VHN. The AMP fabricated at a 3 mm/min feeding speed exhibited the maximum hardness values between 88 and 98.1 VHN.
Keyphrases
  • white matter
  • room temperature
  • multiple sclerosis
  • ionic liquid
  • protein kinase
  • atomic force microscopy
  • single molecule