Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.
Monica K AkreGabriel J StarrettJelmar S QuistNuri A TemizMichael A CarpenterAndrew N J TuttAnita GrigoriadisReuben S HarrisPublished in: PloS one (2016)
Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B) to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.
Keyphrases
- copy number
- genome wide
- cell death
- mitochondrial dna
- cell cycle arrest
- induced apoptosis
- circulating tumor
- endothelial cells
- single molecule
- dna methylation
- single cell
- cell free
- crispr cas
- spinal cord injury
- gene expression
- induced pluripotent stem cells
- squamous cell carcinoma
- bone marrow
- high glucose
- young adults
- drug delivery
- mesenchymal stem cells
- papillary thyroid
- nucleic acid
- pluripotent stem cells
- high density
- case control