Login / Signup

Application of the Nested Enzyme-Within-Enterocyte (NEWE) Turnover Model for Predicting the Time Course of Pharmacodynamic Effects.

Hiroyuki TakitaAdam S DarwichAmais AhmadAmin Rostami-Hodjegan
Published in: CPT: pharmacometrics & systems pharmacology (2020)
The gut wall consists of many biological elements, including enterocytes. Rapid turnover, a prominent feature of the enterocytes, has generally been ignored in the development of enterocyte-targeting drugs, although it has a comparable rate to other kinetic rates. Here, we investigated the impact of enterocyte turnover on the pharmacodynamics of enterocyte-targeting drugs by applying a model accounting for turnover of enterocytes and target proteins. Simulations showed that the pharmacodynamics depend on enterocyte lifespan when drug-target affinity is strong and half-life of target protein is long. Interindividual variability of enterocyte lifespan, which can be amplified by disease conditions, has a substantial impact on the variability of response. However, our comprehensive literature search showed that the enterocyte turnover causes a marginal impact on currently approved enterocyte-targeting drugs due to their relatively weak target affinities. This study proposes a model-informed drug development approach for selecting enterocyte-targeting drugs and their optimal dosage regimens.
Keyphrases
  • bone mineral density
  • systematic review
  • postmenopausal women
  • emergency department
  • deep learning
  • body composition
  • drug induced
  • mass spectrometry
  • small molecule
  • electronic health record
  • high speed