Login / Signup

Grafting induces flowering time and tuber formation changes in Brassica species involving FT signalling.

Y ZhengL LuoZ GaoY LiuQ ChenXiangxiang KongY Yang
Published in: Plant biology (Stuttgart, Germany) (2019)
Brassica species are widely cultivated and important biennial and annual crops. The transition from vegetative to reproductive development in Brassica species is critical in agriculture and horticulture. Grafting is a useful tool for improving agricultural production and investigating the movement of long-range signals. Here we established a hypocotyl micrografting system in B. rapa crops and successfully grafted the rootstock of turnip onto many different scion genotypes. Grafting with turnip rootstock prolonged vegetative growth, delayed flowering and improved seed yield in rapeseed. The late-flowering turnip rootstock could delay flowering of the scion of the early-flowering turnip accession. The BrrFLC1 (FLOWERING LOCUS C1 in B. rapa) transcript levels and H3K4me3 levels at the BrrFLC1 locus were up-regulated and subsequently suppressed the downstream FT (FLOWERING LOCUS T) signals in leaves of the scion to delay flowering. Vernalization treatment can efficiently promote flowering time in turnip. The non-vernalised turnip flowered early after grafting onto the rootstock of the vernalised turnip, which was accompanied by high levels of FT homologue expression in leaves of the scion. Hypocotyl excision experiments revealed that the process of tuber formation was suppressed by removing the hypocotyl tissue, which in turn repressed the expression of tuberization-related genes. Our findings suggest that the rootstock generates mobile signals that are transported from the rootstock to the scion to fine-tune FT signalling and modulate flowering time.
Keyphrases
  • arabidopsis thaliana
  • poor prognosis
  • risk assessment
  • heavy metals
  • genome wide analysis
  • single cell
  • rna seq
  • breast reconstruction
  • sensitive detection
  • binding protein
  • human health
  • replacement therapy
  • living cells