Login / Signup

Prediction of estimated risk for bipolar disorder using machine learning and structural MRI features.

Pavol MikolasMichael MarxenPhilipp RiedelKyra BröckelJulia MartiniFabian HuthChristina BerndtChristoph VogelbacherAndreas JansenTilo KircherIrina FalkenbergMartin LambertVivien KraftGregor LeichtChristoph MulertAndreas J FallgatterThomas EthoferAnne RauKarolina LeopoldAndreas BechdolfAndreas ReifSilke MaturaFelix BermpohlJana FiebigThomas StammChristoph U CorrellGeorg JuckelVera FlasbeckPhilipp RitterMichael BauerAndrea Pfennig
Published in: Psychological medicine (2023)
Individuals at risk for bipolar disorder, as assessed by BPSS-P, display brain structural alterations that can be detected using machine learning. The achieved performance is comparable to previous studies which attempted to classify patients with manifest disease and healthy controls. Unlike previous studies of bipolar risk, our multicenter design permitted a leave-one-site-out cross-validation. Whole-brain cortical thickness seems to be superior to other structural brain features.
Keyphrases