Identification and characterization of candidates involved in production of OMEGAs in microalgae: a gene mining and phylogenomic approach.
Vikas U KapaseAsha A NesammaPannaga Pavan JuturPublished in: Preparative biochemistry & biotechnology (2018)
Optimizing the production of the high-value renewables such as OMEGAs through pathway engineering requires an in-depth understanding of the structure-function relationship of genes involved in the OMEGA biosynthetic pathways. In this preliminary study, our rationale is to identify and characterize the ∼221 putative genes involved in production of OMEGAs using bioinformatic analysis from the Streptophyte (plants), Chlorophyte (green algae), Rhodophyta (red algae), and Bacillariophyta (diatoms) lineages based on their phylogenomic profiling, conserved motif/domain organization and physico-chemical properties. The MEME suite predicted 12 distinct protein domains, which are conserved among these putative genes. The phylogenomic analysis of the putative candidate genes [such as FAD2 (delta-12 desaturase); ECR (enoyl-CoA reductase); FAD2 (delta-12 desaturase); ACOT (acyl CoA thioesterase); ECH (enoyl-CoA hydratase); and ACAT (acetyl-CoA acyltransferase)] with similar domains and motif patterns were remarkably well conserved. Furthermore, the subcellular network prediction of OMEGA biosynthetic pathway genes revealed a unique interaction between the light-dependent chlorophyll biosynthesis and glycerol-3-phosphate dehydrogenase, which predicts a major cross-talk between the key essential pathways. Such bioinformatic analysis will provide insights in finding the key regulatory genes to optimize the productivity of OMEGAs in microalgal cell factories.