Login / Signup

Diversity of rickettsiae in ticks (Acari: Ixodidae) collected from wild vertebrates in part of the Amazon, Cerrado, and Pantanal biomes in Brazil.

Anny Carolina PratiMaerle Oliveira MaiaThiago Fernandes MartinsThaís Oliveira MorgadoSandra Helena Ramiro CorrêaEdson Junior Figueiredo MendesRosa Helena Dos Santos FerrazJessica Rhaiza MudrekChristine StrüssmannDirceu Guilherme de Souza RamosThiago Borges Fernandes SemedoMake Kawatake MinettoDaniel Moura de AguiarRichard de Campos PachecoAndréia Lima Tomé Melo
Published in: Revista brasileira de parasitologia veterinaria = Brazilian journal of veterinary parasitology : Orgao Oficial do Colegio Brasileiro de Parasitologia Veterinaria (2023)
Ticks parasitizing 102 wild animals in the states of Mato Grosso and Goiás, Brazil were collected between 2015 and 2018. A total of 2338 ticks (865 males, 541 females, 823 nymphs, and 109 larvae) belonging to four genera (Amblyomma, Dermacentor, Haemaphysalis, and Rhipicephalus) and at least 21 species were identified. DNA extraction and a molecular survey for rickettsial agents were performed on 650 ticks. The results revealed parasitism by the following species: Rickettsia amblyommatis in Amblyomma cajennense s.s., A. cajennense s.l., Amblyomma coelebs, Amblyomma humerale, Amblyomma longirostre, Amblyomma nodosum, Amblyomma scalpturatum, Amblyomma sculptum, and Amblyomma romitii; Rickettsia parkeri in Amblyomma nodosum, Amblyomma ovale, Amblyomma scalpturatum, and Amblyomma triste; Rickettsia rhipicephali in Haemaphysalis juxtakochi; Rickettsia sp. in A. cajennense s.s., A. nodosum, and A. sculptum, and lastly, 'Candidatus Rickettsia andeanae' in Amblyomma parvum and Rhipicephalus microplus. This study expands the body of knowledge about tick parasitism among wild animals, including new data concerning tick-host associations, and provides information about the epidemiology of tick-borne pathogens in the Center-West region of Brazil.
Keyphrases
  • healthcare
  • machine learning
  • risk factors
  • social media
  • cross sectional
  • deep learning
  • single molecule
  • big data
  • electronic health record