Login / Signup

Introducing insoluble wheat bran as a gut microbiota niche in an in vitro dynamic gut model stimulates propionate and butyrate production and induces colon region specific shifts in the luminal and mucosal microbial community.

Kim De PaepeJoran VerspreetKristin VerbekeJeroen RaesChristophe M CourtinTom Van de Wiele
Published in: Environmental microbiology (2018)
The spatial organization of gut microorganisms is important with respect to their functional role in the gut ecosystem. Regional differences in the longitudinal and lateral direction are, however, not frequently studied, given the difficulty to sample these human gut regions in vivo. Particularly the insoluble food particle-associated microbiota is poorly studied. Therefore, the long-term effects of insoluble wheat bran supplementation on the composition and functionality of the gut microbial community derived from six individuals were explored in the Dietary Particle-Mucosal-Simulator of the Human Intestinal Microbial Ecosystem in vitro model. Wheat bran stimulated propionate and butyrate production and induced shifts in the luminal and mucosal microbial community composition. The insoluble wheat bran residue and the mucus layer were identified as crucial platforms in sustaining diversity by selectively enriching species, which are not thriving in the luminal environment, including Lactobacillus, Bifidobacterium and Dialister species, Roseburia faecis, Prevotella copri and Bacteroides ovatus. Despite the evident habitat preference, some parallels could be drawn between the enrichment of taxa on bran platforms and their stimulation in the luminal and mucosal communities. Removing wheat bran during the wash-out period reversed the functional effects and gave rise to a blooming of some taxa that are considered opportunistic pathogens.
Keyphrases