Hyperbranched Cationic Glycogen Derivative-Mediated IκBα Gene Silencing Regulates the Uveoscleral Outflow Pathway in Rats.
Rui ZengJinmiao LiHaijun GongJiahao LuoZi-Jing LiZhaoxing OuSi ZhangLiqun YangYuqing LanPublished in: BioMed research international (2020)
The role of the IκB/NF-κB signaling pathway in the uveoscleral outflow pathway was investigated with IκBα gene silencing mediated by the 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) derivative. The IκBα-siRNA-loaded DMAPA-Glyp complex was transfected into the ciliary muscles of rats by intracameral injection (labeled as the DMAPA-Glyp+siRNA group). The Lipofectamine™ 2000 (Lipo)/siRNA complex and the naked siRNA were set as the controls. The mRNA and protein expression of IκBα, NF-κBp65, and MMP-2 were analyzed by real-time PCR, western blotting, and in situ gelatin zymography. Nuclear translocation of NF-κBp65 was analyzed by immunofluorescence. Rat intraocular pressure (IOP) was monitored pre- and postinjection. Gene transfection efficiency and toxicity of the DMAPA-Glyp derivative were also evaluated. After RNA interference (RNAi), IκBα mRNA and protein expression were significantly inhibited. NF-κBp65 mRNA and protein expression showed no significant differences. Nevertheless, nuclear translocation of NF-κBp65 occurred in the DMAPA-Glyp+siRNA group. Both mRNA expression and activity of MMP-2 increased, with the largest increase in the DMAPA-Glyp+siRNA group. IOP in the DMAPA-Glyp+siRNA group fell to the lowest level on day 3 after RNAi. The levels of Cy3-siRNA in the ciliary muscle of the DMAPA-Glyp+siRNA group did not significantly decrease over time. At 7 and 14 d after RNAi, no significant pathological damage was detectable in the eyes injected with the DMAPA-Glyp derivative or the DMAPA-Glyp/siRNA complex. Taken together, our results suggest that downregulation of IκBα expression in the ciliary muscle plays a crucial role in reducing the IOP values of rats. IκBα may become a new molecular target for lowering IOP in glaucoma. The DMAPA-Glyp derivative is safe and feasible as an effective siRNA vector in rat eyes.
Keyphrases
- signaling pathway
- cancer therapy
- oxidative stress
- hyaluronic acid
- pi k akt
- lps induced
- drug delivery
- nuclear factor
- epithelial mesenchymal transition
- skeletal muscle
- binding protein
- cell proliferation
- gene expression
- poor prognosis
- dna methylation
- real time pcr
- copy number
- pet imaging
- toll like receptor
- single molecule
- cataract surgery
- high resolution
- endoplasmic reticulum stress