Effect of sublethal α-cypermethrin exposure on main macromolecules concentration, energy content, and malondialdehyde concentration in free-feeding Danio rerio larvae.
Jesús Rodríguez-EstradaAlma Socorro Sobrino-FigueroaFelipe Fernando Martínez JerónimoPublished in: Fish physiology and biochemistry (2015)
α-Cypermethrin (Cyp) is a synthetic insecticide used to control pests in agricultural crops and to protect human health against noxious insects; this toxic can reach aquatic systems through ground infiltration or by runoff and could affect the aquatic biota. The present study was aimed at evaluating the acute toxicity of Cyp on zebrafish (Danio rerio) exogenous feeding larvae of 10 and 20 days post-fertilization (dpf), and of sublethal concentrations on only 10-dpf larvae. Proteins, lipids, carbohydrates, glycogen concentration, and total energy contents, as well as malondialdehyde (MDA) quantification, through thiobarbituric acid reactive substances, as a lipid peroxidation biomarker, were assessed in free-feeding larvae exposed to sublethal Cyp concentrations. The LC50 for 10-dpf larvae was 1.94 µg L(-1), and these were more sensitive than 20-dpf larvae (3.56 µg L(-1)). The amount of protein, carbohydrates, and glycogen were not significantly affected (p > 0.05), but sublethal Cyp concentrations exposure caused decrement in lipids from 9.05 to 3.74 µg larva(-1), as well as a reduction in MDA and in the total energy content, which affected significantly the development of this fish. Although Cyp is considered an insecticide of reduced residual effect in the environment, the present study revealed that relatively low Cyp concentrations produced significant toxic effects on exogenous feeding fish larvae, a situation that could contribute to increase deaths during this already critical developmental stage in which high mortality is observed frequently.