A Collection of Pre-mRNA Splicing Mutants in Arabidopsis thaliana.
Tatsuo KannoPeter VenhuizenMing-Tsung WuPhebe ChiouChia-Liang ChangMaria KalynaAntonius J M MatzkeMarjori MatzkePublished in: G3 (Bethesda, Md.) (2020)
To investigate factors influencing pre-mRNA splicing in plants, we conducted a forward genetic screen using an alternatively-spliced GFP reporter gene in Arabidopsis thaliana This effort generated a collection of sixteen mutants impaired in various splicing-related proteins, many of which had not been recovered in any prior genetic screen or implicated in splicing in plants. The factors are predicted to act at different steps of the spliceosomal cycle, snRNP biogenesis pathway, transcription, and mRNA transport. We have described eleven of the mutants in recent publications. Here we present the final five mutants, which are defective, respectively, in RNA-BINDING PROTEIN 45D (rbp45d), DIGEORGE SYNDROME CRITICAL REGION 14 (dgcr14), CYCLIN-DEPENDENT KINASE G2 (cdkg2), INTERACTS WITH SPT6 (iws1) and CAP BINDING PROTEIN 80 (cbp80). We provide RNA-sequencing data and analyses of differential gene expression and alternative splicing patterns for the cbp80 mutant and for several previously published mutants, including smfa and new alleles of cwc16a, for which such information was not yet available. Sequencing of small RNAs from the cbp80 mutant highlighted the necessity of wild-type CBP80 for processing of microRNA (miRNA) precursors into mature miRNAs. Redundancy tests of paralogs encoding several of the splicing factors revealed their functional non-equivalence in the GFP reporter gene system. We discuss the cumulative findings and their implications for the regulation of pre-mRNA splicing efficiency and alternative splicing in plants. The mutant collection provides a unique resource for further studies on a coherent set of splicing factors and their roles in gene expression, alternative splicing and plant development.