Minute oscillation stretching: A novel modality for reducing musculo-tendinous stiffness and maintaining muscle strength.
Naoki IkedaTakahisa YonezuYasuo KawakamiPublished in: Scandinavian journal of medicine & science in sports (2020)
A novel stretching modality was developed to provide repetitive small length changes to the plantar flexors undergoing passive stretch defined as "minute oscillation stretching" (MOS). This study investigated the effects of MOS on neuromuscular activity during force production, the rate of torque development (RTD), and the elastic properties of the plantar flexors and Achilles tendon. Ten healthy males participated in this study. The neuromuscular activity of the triceps surae and tibialis anterior muscles during maximal voluntary plantar flexion torque [MVT], RTD of plantar flexion, Achilles tendon stiffness, and muscle stiffness were measured before and after two types of interventions for a total of 5 minutes: static stretching (SS) and MOS at 15 Hz and without intervention (control). Achilles tendon stiffness was calculated from the tendon elongation measuring by ultrasonography. Muscle stiffness was determined for the medial gastrocnemius [MG] using shear wave elastography. The MVT, mean electromyographic amplitudes [mEMG] of MG and lateral gastrocnemius [LG], and RTD were significantly decreased following SS (MVT: -7.2 ± 7.9%; mEMG of MG: -8.7 ± 10.2%; mEMG of LG: -12.4 ± 10.5%; RTD: -6.6 ± 6.8%), but not after MOS. Achilles tendon stiffness significantly decreased after SS (-13.4 ± 12.3%) and MOS (-9.7 ± 11.5%), with no significant differences between them. Muscle stiffness significantly decreased in SS and MOS, with relative changes being significantly greater for MOS (-7.9 ± 8.3%) than SS (-2.3 ± 2.9%) interventions. All variables remained unchanged in the controls. In conclusion, MOS changed muscle-tendon compliance without loss of muscle function.
Keyphrases
- quantum dots
- room temperature
- reduced graphene oxide
- skeletal muscle
- transition metal
- visible light
- high frequency
- highly efficient
- magnetic resonance imaging
- physical activity
- randomized controlled trial
- minimally invasive
- blood pressure
- gold nanoparticles
- atomic force microscopy
- high resolution
- mass spectrometry
- high intensity
- resistance training