A bioactive fraction of Pterocarpus santalinus inhibits adipogenesis and inflammation in 3T3-L1 cells via modulation of PPAR-γ/SREBP-1c and TNF-α/IL-6.
Karunakaran Reddy SankaranMuni Swamy GanjayiLokanatha OrugantiAppa Rao ChippadaBalaji MerigaPublished in: 3 Biotech (2021)
Pterocarpus santalinus has huge demand owing to its commercial and medicinal value. However, there are limited research studies on its therapeutic activity against obesity and obesity-induced inflammation and underlying mechanism of action. Therefore, in the present study, chloroform bioactive fraction of P. santalinus (CFP) was isolated and evaluated for its activity against adipogenesis and adipogenesis-induced inflammation in 3T3-L1 cell culture model. LC-MS/MS analysis of CFP was performed to identify the compounds present. CFP-treated 3T3-L1 cells (50, 100 and 200 μg/ml) have significantly (p < 0.01 or < 0.05) enhanced glycerol release and adiponectin level, but reduced lipid accumulation and leptin, and MTT assay demonstrated CFP was non-toxic till a dose of 300 µg/ml at 24 and 48 h. A considerable reduction in tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels was witnessed in lipopolysaccharide (LPS)-induced 3T3-L1 cells with CFP treatment in dose-dependent manner. Gene expression studies demonstrated down-regulation of mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element-binding protein-1c (SREBP-1c), leptin, TNF-α and IL-6 but up-regulation of adiponectin and uncoupling protein-1 (UCP-1) and the same trend was observed in protein expression also. In conclusion, it is suggested that CFP could be beneficial to treat obesity and associated inflammation.
Keyphrases
- insulin resistance
- induced apoptosis
- oxidative stress
- metabolic syndrome
- high fat diet induced
- lps induced
- rheumatoid arthritis
- gene expression
- cell cycle arrest
- binding protein
- inflammatory response
- weight loss
- type diabetes
- diabetic rats
- high glucose
- weight gain
- adipose tissue
- signaling pathway
- fatty acid
- dna methylation
- immune response
- high throughput
- small molecule
- body mass index
- nitric oxide synthase
- replacement therapy