Comparative transcriptomic analysis of the larval and adult stages of Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea).
Tuyana Valeryevna SidorovaIvan Alexandrovich KutyrevKirill Vladimirovich KhabudaevLyubov Vasiliyevna SukhanovaYadong ZhengZhargal Nimaevich DugarovOlga Evgenievna MazurPublished in: Parasitology research (2022)
Tapeworms of the genus Dibothriocephalus are widely distributed throughout the world, some of which are agents of human diphyllobothriasis, one of the most important fish-borne zoonoses caused by a cestode parasite. Genomic and transcriptomic data can be used to develop future diagnostic tools and epidemiological studies. The present work focuses on a comparative analysis of the transcriptomes of adult and plerocercoid D. dendriticus and the identification of their differentially expressed genes (DEGs). Transcriptome assembly and analysis yielded and annotated 35,129 unigenes, noting that 16,568 (47%) unigenes were not annotated in known databases, which may indicate a unique set of expressed transcripts for D. dendriticus. A total of 8022 differentially expressed transcripts were identified, including 3225 upregulated and 4797 downregulated differentially expressed transcripts from the plerocercoid and adult animals. The analysis of DEGs has shown that among the most differentially expressed genes, there are important genes characteristic of each stage. Thus, several genes are characteristic of D. dendriticus plerocercoids, including fatty acid-binding protein and ferritin. Among the most highly expressed DEGs of the adult stage of D. dendriticus is the Kunitz-type serine protease inhibitor, in two putative isoforms. The analyses of GO and KEGG metabolic pathways revealed that a large number of the DEGs of D. dendriticus are associated with the biosynthesis of various substances such as arginine and folate, as well as with various metabolic pathways such as galactose metabolism, selenocompound metabolism, and phosphonate and phosphinate metabolism. This will contribute to further research aimed at identifying targets for new generation drugs and the development of specific vaccines.