Rapid Diels-Alder Cross-linking of Cell Encapsulating Hydrogels.
Christopher M MadlSarah C HeilshornPublished in: Chemistry of materials : a publication of the American Chemical Society (2019)
Recent efforts in the design of hydrogel biomaterials have focused on better mimicking the native cellular microenvironment to direct cell fate. To simultaneously control multiple material parameters, several orthogonal chemistries may be needed. However, present strategies to prepare cell-encapsulating hydrogels make use of relatively few chemical reactions. To expand this chemical toolkit, we report the preparation of hydrogels based on a Diels-Alder reaction between fulvenes and maleimides with markedly improved gelation kinetics and hydrolytic stability. Fulvene-maleimide gels cross-link up to 10-times faster than other commonly used DA reaction pairs and remain stable for months under physiological conditions. Furthermore, fulvene-maleimide gels presenting relevant biochemical cues, such as cell-adhesive ligands and proteolytic degradability, support the culture of human mesenchymal stromal cells. Finally, this rapid DA reaction was combined with an orthogonal click reaction to demonstrate how the use of selective chemistries can provide new avenues to incorporate multiple functionalities in hydrogel materials.