Login / Signup

Antibodies Targeting the Cell Wall Induce Protection against Virulent Mycobacterium bovis Infection.

Mengjin QuZhengmin LiangYulan ChenYuanzhi WangHaoran WangZiyi LiuYiduo LiuYuhui DongXin GeHao LiXiangmei Zhou
Published in: Microbiology spectrum (2023)
Accumulating evidence indicates that antibodies can protect against some intracellular pathogens. Mycobacterium bovis is an intracellular bacterium, and its cell wall (CW) is essential for its virulence and survival. However, the questions of whether antibodies play a protective role in immunity against M. bovis infection and what effects antibodies specific to the CW of M. bovis have still remain unclear. Here, we report that antibodies targeting the CW of an isolated pathogenic M. bovis strain and that of an attenuated bacillus Calmette-Guérin (BCG) strain could induce protection against virulent M. bovis infection in vitro and in vivo . Further research found that the antibody-induced protection was mainly achieved by promoting Fc gamma receptor (FcγR)-mediated phagocytosis, inhibiting bacterial intracellular growth, and enhancing the fusion of phagosomes and lysosomes, and it also depended on T cells for its efficacy. Additionally, we analyzed and characterized the B-cell receptor (BCR) repertoires of CW-immunized mice via next-generation sequencing. CW immunization stimulated BCR changes in the complementarity determining region 3 (CDR3) isotype distribution, gene usage, and somatic hypermutation. Overall, our study validates the idea that antibodies targeting the CW induce protection against virulent M. bovis infection. This study highlights the importance of antibodies targeting the CW in the defense against tuberculosis. IMPORTANCE M. bovis is the causative agent of animal tuberculosis (TB) and human TB. Research on M. bovis is of great public health significance. Currently, TB vaccines are mainly aimed at eliciting protection by enhancement of cell-mediated immunity, and there are few studies on protective antibodies. This is the first report of protective antibodies against M. bovis infection, and the antibodies had both preventive and even therapeutic effects in an M. bovis infection mouse model. Additionally, we reveal the relationship between CDR3 gene diversity and the immune characteristics of the antibodies. These results will provide valuable advice for the rational development of TB vaccines.
Keyphrases