Login / Signup

The destruction of Escherichia coli adhered to pipe surfaces in a model drinking water distribution system via various antibiofilm agents.

Bahaa Ahmed HemdanMohamed Azab El-LiethyGamila E El-Taweel
Published in: Water environment research : a research publication of the Water Environment Federation (2020)
The aim of the study is to estimate the effectiveness of three antibiofilm agents against Escherichia coli biofilm that formed in six different types of pipelines. A laboratory-scale water system was built for this work to allow for the creation of biofilm in the pipelines studied. The level of the growth rate of E. coli biofilm cells was monitored over 90 days on those tested pipe materials. The results of bacterial cell densities displayed that the highest biofilm growth was observed in the biofilm formed on the iron (Fe) pipe. In contrast, the biofilm formation rate was significantly lower on copper (Cu) pipe compared to other materials. Three antibiofilm agents, including chlorine, silver ions (Ag+ ), and silver nanoparticles (AgNPs), were employed to eradicate the biofilm cells. E. coli counts indicated that AgNPs are more efficient in destructing any formed biofilm cells on all tested materials. At the same time, the chlorine was only useful in the case of biofilm developed on plastic and Cu. However, the antibiofilm efficiency of Ag+ performs similarly to chlorine against E. coli biofilm cells. Ultimately, AgNPs are considred the most powerful antibiofilm agent among the other agents toward the biofilm cells in their maturation stage, which offers an encouraging way for the long-term functioning of water systems. PRACTITIONER POINTS: The growth rate of E. coli biofilm cells was investigated on different materials. The count of biofilm cells developed on iron pipes was higher than other materials. The E. coli biofilm on iron pipe could resist chlorine and AgNPs to a large extent. The developed biofilm on copper pipe was more sensitive to chlorine, Ag+ . and AgNPs. The biofilm cells could be easily eradicated from plastic-based materials with all tested disinfectants.
Keyphrases