Login / Signup

Xanthan-Polyurethane Conjugates: An Efficient Approach for Drug Delivery.

Narcis AnghelIuliana SpiridonMaria Valentina DinuStelian VladMihaela Perțea
Published in: Polymers (2024)
The antifungal agent, ketoconazole, and the anti-inflammatory drug, piroxicam, were incorporated into matrices of xanthan or oleic acid-esterified xanthan (Xn) and polyurethane (PU), to develop topical drug delivery systems. Compared to matrices without bioactive compounds, which only showed a nominal compressive stress of 32.18 kPa (sample xanthan-polyurethane) at a strain of 71.26%, the compressive resilience of the biomaterials increased to nearly 50.04 kPa (sample xanthan-polyurethane-ketoconazole) at a strain of 71.34%. The compressive strength decreased to around 30.67 kPa upon encapsulating a second drug within the xanthan-polyurethane framework (sample xanthan-polyurethane-piroxicam/ketoconazole), while the peak sustainable strain increased to 87.21%. The Weibull model provided the most suitable fit for the drug release kinetics. Unlike the materials based on xanthan-polyurethane, those made with oleic acid-esterified xanthan-polyurethane released the active ingredients more slowly (the release rate constant showed lower values). All the materials demonstrated antimicrobial effectiveness. Furthermore, a higher volume of piroxicam was released from oleic acid-esterified xanthan-polyurethane-piroxicam (64%) as compared to xanthan-polyurethane-piroxicam (44%). Considering these results, materials that include polyurethane and either modified or unmodified xanthan showed promise as topical drug delivery systems for releasing piroxicam and ketoconazole.
Keyphrases
  • tissue engineering
  • drug delivery
  • drug release
  • randomized controlled trial
  • emergency department
  • anti inflammatory
  • machine learning
  • staphylococcus aureus
  • cancer therapy
  • candida albicans
  • adverse drug
  • wound healing