Nobiletin Enhances Chemosensitivity to Adriamycin through Modulation of the Akt/GSK3β/β⁻Catenin/MYCN/MRP1 Signaling Pathway in A549 Human Non-Small-Cell Lung Cancer Cells.
Jeong Yong MoonLe Van Manh HungTatsuya UnnoSomi Kim ChoPublished in: Nutrients (2018)
Drug resistance is a major problem in the treatment of non-small-cell lung cancer (NSCLC). In this study, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to identify the differentially expressed genes in Adriamycin (ADR)-resistant NSCLC A549/ADR cells compared with parental A549 cells. Among the tested phytochemicals, nobiletin (NBT) is able to overcome the ADR resistance of A549/ADR cells. NBT treatment decreased the expression of a neuroblastoma-derived MYC (MYCN) and multidrug resistance-associated protein 1 (MRP1) as well as downregulating Akt, GSK3β, and β-catenin. Consistent with these results, NBT treatment resulted in the accumulation of intracellular ADR. A combination index (CI) assay confirmed the synergistic effect of combined treatment with NBT and ADR in reducing the viability of A549/ADR cells (CI = 0.152). Combined treatment with NBT and ADR enhanced apoptosis in A549/ADR cells, as evidenced by increased caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, and sub-G1 population compared to treatment with ADR alone. In vivo experiments using a mouse xenograft model revealed that combination therapy with NBT and ADR significantly reduced tumor volume by 84.15%. These data suggest that NBT can sensitize ADR-induced cytotoxicity against A549/ADR cells by inhibiting MRP1 expression, indicating that NBT could serve as an effective adjuvant agent for ADR-based chemotherapy in lung cancer.
Keyphrases
- induced apoptosis
- adverse drug
- signaling pathway
- cell cycle arrest
- combination therapy
- endoplasmic reticulum stress
- small cell lung cancer
- oxidative stress
- cell proliferation
- epithelial mesenchymal transition
- poor prognosis
- gene expression
- squamous cell carcinoma
- electronic health record
- long non coding rna
- drug delivery
- dna damage
- reactive oxygen species
- transcription factor
- radiation therapy
- mesenchymal stem cells
- artificial intelligence
- replacement therapy
- advanced non small cell lung cancer
- drug induced
- dna methylation
- dna binding