Fe2O3/SnSSe Hexagonal Nanoplates as Lithium-Ion Batteries Anode.
Yufei ZhangJun YangYizhou ZhangChengchao LiWei HuangQingyu YanXiaochen DongPublished in: ACS applied materials & interfaces (2018)
Novel two-dimensional (2D) Fe2O3/SnSSe hexagonal nanoplates were prepared from hot-inject process in oil phase. The resulted hybrid manifests a typical 2D hexagonal nanoplate morphology covered with thin carbon layer. Serving as anode material of lithium-ion battery (LIB), the Fe2O3/SnSSe hybrid delivers an outstanding capacity of 919 mAh g-1 at 100 mA g-1 and a discharge capacity of 293 mAh g-1 after 300 cycles at the current density of 5 A g-1. Compared with pristine SnSSe nanoplates, the Fe2O3/SnSSe hybrid exhibits both higher capacity and better stability. The enhanced performance is mainly attributed to the 2D substrate together with the synergistic effects offered by the integration of SnSSe with Fe2O3. The 2D Fe2O3/SnSSe hybrid can afford highly accessible sites and short ion diffusion length, which facilitate the ion accessibility and improves the charge transport. The novel structure and high performance demonstrated here afford a new way for structural design and the synthesis of chalcogenides as LIB anodes.