Generalized low levels of serum N-glycans associate with better health status.
Jiteng FanJichen ShaShuwai ChangHuijuan ZhaoXiaoyun NiuYong GuJianxin GuShifang RenPublished in: Aging cell (2023)
Caloric restriction (CR) can prolong life and ameliorate age-related diseases; thus, its molecular basis might provide new insights for finding biomarker and intervention for aging and age-related disease. Glycosylation is an important post-translational modification, which can timely reflect the changes of intracellular state. Serum N-glycosylation was found changed with aging in humans and mice. CR is widely accepted as an effective anti-aging intervention in mice and could affect mouse serum fucosylated N-glycans. However, the effect of CR on the level of global N-glycans remains unknown. In order to explore whether CR affect the level of global N-glycans, we performed a comprehensive serum glycome profiling in mice of 30% calorie restriction group and ad libitum group at 7 time points across 60 weeks by MALDI-TOF-MS. At each time point, the majority of glycans, including galactosylated and high mannose glycans, showed a consistent low level in CR group. Interestingly, O-acetylated sialoglycans presented an upward change different from other derived traits, which is mainly reflected in two biantennary α2,6-linked sialoglycans (H5N4Ge2Ac1, H5N4Ge2Ac2). Liver transcriptome analysis further revealed a decreased transcriptional level of genes involved in N-glycan biosynthesis while increased level of acetyl-CoA production. This finding is consistent with changes in serum N-glycans and O-acetylated sialic acids. Therefore, we provided one possible molecular basis for the beneficial effect of CR from N-glycosylation perspective.