Analysis of Safety and Effectiveness of Sodium Alginate/Poly(γ-glutamic acid) Microspheres for Rapid Hemostasis.
Yun WangPei WangHaoran JiGuangyu JiMingsong WangXiansong WangPublished in: ACS applied bio materials (2021)
Most preventable deaths after trauma are related to hemorrhage and occur early after injury. Timely hemostatic treatment is essential to minimize blood loss and improve survival. Among the various treatment methods, the most economical and effective is to use a hemostatic agent. A powdered hemostatic agent can be used for wounds of any shape or depth with high compactness and excellent accumulation effect. Herein, we chose the natural, hydrophilic polymer poly(γ-glutamic acid) (γ-PGA) to form composite hemostatic microspheres with sodium alginate (SA), which show good biocompatibility, water absorptivity, and viscosity. The morphology and structure of the hemostatic microspheres were determined using Fourier transform infrared spectroscopy and scanning electron microscopy. The overall safety, hemolysis, pyrogenic, and intradermal irritation tests were examined. The relationship between hemostatic pressure and hemostatic time during microsphere use was also measured. The hemostatic effect was analyzed with a liver, spleen, and femoral artery bleeding model. The composite microspheres were well tolerated in vivo and exhibited better hemostatic effects in animal experiments than a microporous polysaccharide powder compound. Research results showed that SA/γ-PGA microspheres are materials with good hemostatic effect, high safety, and great potential in clinical applications.