Login / Signup

Evolution-inspired engineering of nonribosomal peptide synthetases.

Kenan A J BozhüyükLeonard PräveCarsten KeglerLeonie SchenkSebastian KaiserChristian SchelhasYan-Ni ShiWolfgang KuttenlochnerMax SchreiberJoshua KandlerMohammad AlanjaryT M MohiuddinMichael GrollGeorg K A HochbergHelge B Bode
Published in: Science (New York, N.Y.) (2024)
Many clinically used drugs are derived from or inspired by bacterial natural products that often are produced through nonribosomal peptide synthetases (NRPSs), megasynthetases that activate and join individual amino acids in an assembly line fashion. In this work, we describe a detailed phylogenetic analysis of several bacterial NRPSs that led to the identification of yet undescribed recombination sites within the thiolation (T) domain that can be used for NRPS engineering. We then developed an evolution-inspired "eXchange Unit between T domains" (XUT) approach, which allows the assembly of NRPS fragments over a broad range of GC contents, protein similarities, and extender unit specificities, as demonstrated for the specific production of a proteasome inhibitor designed and assembled from five different NRPS fragments.
Keyphrases
  • amino acid
  • dna damage
  • binding protein
  • oxidative stress
  • mass spectrometry
  • bioinformatics analysis
  • light emitting