Disrupting the epileptogenic network with stereoelectroencephalography-guided radiofrequency thermocoagulation.
Hellen KreinterPoul H EspinoSonia Iliana Mejía-PérezKhalid AlorabiGreydon GilmoreJorge G BurneoDavid A StevenKeith W MacDougallMichelle-Lee JonesGiovanni PellegrinoDavid DiosySeyed M MirsattariJonathan C LauAna Suller MartíPublished in: Epilepsia (2024)
Stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) is a treatment option for focal drug-resistant epilepsy. In previous studies, this technique has shown seizure reduction by ≥50% in 50% of patients at 1 year. However, the relationship between the location of the ablation within the epileptogenic network and clinical outcomes remains poorly understood. Seizure outcomes were analyzed for patients who underwent SEEG-guided RF-TC and across subgroups depending on the location of the ablation within the epileptogenic network, defined as SEEG sites involved in seizure generation and spread. Eighteen patients who had SEEG-guided RF-TC were included. SEEG-guided seizure-onset zone ablation (SEEG-guided SOZA) was performed in 12 patients, and SEEG-guided partial seizure-onset zone ablation (SEEG-guided P-SOZA) in 6 patients. The early spread was ablated in three SEEG-guided SOZA patients. Five patients had ablation of a lesion. The seizure freedom rate in the cohort ranged between 22% and 50%, and the responder rate between 67% and 85%. SEEG-guided SOZA demonstrated superior results for both outcomes compared to SEEG-guided P-SOZA at 6 months (seizure freedom p = .294, responder rate p = .014). Adding the early spread ablation to SEEG-guided SOZA did not increase seizure freedom rates but exhibited comparable effectiveness regarding responder rates, indicating a potential network disruption.