Metabolomics Investigation Reveals That 8-C N-Ethyl-2-pyrrolidinone-Substituted Flavan-3-ols Are Potential Marker Compounds of Stored White Teas.
Weidong DaiJunfeng TanMeiling LuYin ZhuPengliang LiQunhua PengLi GuoYue ZhangDongchao XieZhengyan HuZhi LinPublished in: Journal of agricultural and food chemistry (2018)
White teas of different stored ages have varied flavor, bioactivity, and commercial value. In this study, a liquid chromatography-mass spectrometry-based metabolomics investigation revealed that there are distinct differences among the compound patterns of Baihaoyinzhen (BHYZ) and Baimudan (BMD) white teas with various storage durations. The levels of flavan-3-ols, procyanidins, theasinensins, theaflavins, flavonol- O-glycosides, flavone- C-glycosides, and most of the amino acids were reduced after long-term (>4 years) storage. More importantly, 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs), including seven novel compounds discovered in white teas for the first time, were formed from theanine and flavan-3-ols during storage, and their contents were positively correlated with the storage duration. These findings were further confirmed by the linearly increasing formation of EPSFs in reaction solution and BMD white teas stored in an environment-controlled cabinet. In conclusion, EPSFs were detected in white teas for the first time and were discovered as marker compounds and potential indicators for long-term storage of white tea.