This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention.
Keyphrases
- clinical trial
- cardiovascular disease
- emergency department
- type diabetes
- randomized controlled trial
- gene expression
- big data
- dna methylation
- machine learning
- genome wide
- study protocol
- transcription factor
- artificial intelligence
- anti inflammatory
- data analysis
- deep learning
- replacement therapy
- drug induced
- smoking cessation
- case control