Login / Signup

High-permittivity Solvents Increase MXene Stability and Stacking Order Enabling Ultraefficient Terahertz Shielding.

Xiaodan HongZhenyu XuZhong-Peng LvZhen LinMohsen AhmadiLinfan CuiVille LiljeströmVolodymyr DudkoJiali ShengXiaoqi CuiAlexey P TsapenkoJosef BreuZhipei SunQiang ZhangEsko KauppinenBo PengOlli Ikkala
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
2D transition metal carbides and nitrides (MXenes) suggest an uncommonly broad combination of important functionalities amongst 2D materials. Nevertheless, MXene suffers from facile oxidation and colloidal instability upon conventional water-based processing, thus limiting applicability. By experiments and theory, It is suggested that for stability and dispersibility, it is critical to select uncommonly high permittivity solvents such as N-methylformamide (NMF) and formamide (FA) (ε r  = 171, 109), unlike the classical solvents characterized by high dipole moment and polarity index. They also allow high MXene stacking order within thin films on carbon nanotube (CNT) substrates, showing very high Terahertz (THz) shielding effectiveness (SE) of 40-60 dB at 0.3-1.6 THz in spite of the film thinness < 2 µm. The stacking order and mesoscopic porosity turn relevant for THz-shielding as characterized by small-angle X-ray scattering (SAXS). The mechanistic understanding of stability and structural order allows guidance for generic MXene applications, in particular in telecommunication, and more generally processing of 2D materials.
Keyphrases
  • high resolution
  • ionic liquid
  • randomized controlled trial
  • carbon nanotubes
  • systematic review
  • magnetic resonance imaging
  • magnetic resonance
  • gold nanoparticles
  • room temperature
  • highly efficient
  • living cells