Confinement-Induced Biocatalytic Activity Enhancement of Light- and Thermoresponsive Polymer@Enzyme@MOF Composites.
Rubina JabeenMuhammad Ali TajwarChangyan CaoYutong LiuShidi ZhangNasir AliLi QiPublished in: ACS applied materials & interfaces (2024)
Metal-organic frameworks (MOFs) are favorable hosting materials for fixing enzymes to construct enzyme@MOF composites and to expand the applications of biocatalysts. However, the rigid structure of MOFs without tunable hollow voids and a confinement effect often limits their catalytic activities. Taking advantage of the smart soft polymers to overcome the limitation, herein, a protection protocol to encapsulate the enzyme in zeolitic imidazolate framework-8 (ZIF-8) was developed using a glutathione-sensitive liposome (L) as a soft template. Glucose oxidase (GOx) and horseradish peroxidase (HRP) were first anchored on a light- and thermoresponsive porous poly(styrene-maleic anhydride- N , N -dimethylaminoethyl methacrylate-spiropyran) membrane (PSMDSP) to produce PSMDSP@GOx-HRP, which could provide a confinement effect by switching the UV irradiation or varying the temperature. Afterward, embedding PSMDSP@GOx-HRP in L and encapsulating PSMDSP@GOx-HRP@L into hollow ZIF-8 (HZIF-8) to form PSMDSP@GOx-HRP@HZIF-8 composites were performed, which proceeded during the crystallization of the framework following the removal of L by adding glutathione. Impressively, the biocatalytic activity of the composites was 4.45-fold higher than that of the free enzyme under UV irradiation at 47 °C, which could benefit from the confinement effect of PSMDSP and the conformational freedom of the enzyme in HZIF-8. The proposed composites contributed to the protection of the enzyme against harsh conditions and exhibited superior stability. Furthermore, a colorimetric assay based on the composites for the detection of serum glucose was established with a linearity range of 0.05-5.0 mM, and the calculated LOD value was 0.001 mM in a cascade reaction system. This work provides a universal design idea and a versatile technique to immobilize enzymes on soft polymer membranes that can be encapsulated in porous rigid MOF-hosts. It also holds potential for the development of smart polymer@enzyme@HMOFs biocatalysts with a tunable confinement effect and high catalytic performance.
Keyphrases
- metal organic framework
- reduced graphene oxide
- aqueous solution
- randomized controlled trial
- gold nanoparticles
- metabolic syndrome
- blood glucose
- type diabetes
- high resolution
- high throughput
- fluorescent probe
- molecularly imprinted
- molecular dynamics
- climate change
- crystal structure
- high glucose
- quantum dots
- insulin resistance