Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava.
Williams EsumaAlfred OzimatiPeter A KulakowMichael A GoreMarnin D WolfeEphraim NuwamanyaChiedozie EgesiRobert S KawukiPublished in: G3 (Bethesda, Md.) (2021)
Global efforts are underway to develop cassava with enhanced levels of provitamin A carotenoids to sustainably meet increasing demands for food and nutrition where the crop is a major staple. Herein, we tested the effectiveness of genomic selection (GS) for rapid improvement of cassava for total carotenoids content and associated traits. We evaluated 632 clones from Uganda's provitamin A cassava breeding pipeline and 648 West African introductions. At harvest, each clone was assessed for level of total carotenoids, dry matter content, and resistance to cassava brown streak disease (CBSD). All clones were genotyped with diversity array technology and imputed to a set of 23,431 single nucleotide polymorphic markers. We assessed predictive ability of four genomic prediction methods in scenarios of cross-validation, across population prediction, and inclusion of quantitative trait loci markers. Cross-validations produced the highest mean prediction ability for total carotenoids content (0.52) and the lowest for CBSD resistance (0.20), with G-BLUP outperforming other models tested. Across population, predictions showed low ability of Ugandan population to predict the performance of West African clones, with the highest predictive ability recorded for total carotenoids content (0.34) and the lowest for CBSD resistance (0.12) using G-BLUP. By incorporating chromosome 1 markers associated with carotenoids content as independent kernel in the G-BLUP model of a cross-validation scenario, prediction ability slightly improved from 0.52 to 0.58. These results reinforce ongoing efforts aimed at integrating GS into cassava breeding and demonstrate the utility of this tool for rapid genetic improvement.