Login / Signup

Molecular Dynamics Simulations of Supramolecular Polymers within Nanoconfinements for Enhanced Oil Recovery.

Shideng YuanAnqi GuoHeng ZhangZhining WangShiling Yuan
Published in: ACS applied materials & interfaces (2024)
Supramolecular polymers offer promising potential for enhanced oil recovery (EOR) advancing techniques. Current instrumental analyses face limitations in capturing instantaneous intracomplex motions due to temporal and spatial constraints. The molecular mechanism of supramolecular polymer transport behavior within nanoconfinement is not yet fully understood. Therefore, the self-assembly mechanism of β-cyclodextrin (β-CD) and adamantane (ADA)-modified supramolecular polymers (p-AA-β-CD-ADA) was delved into in this work. Further exploration focuses on the translocation dynamics of p-AA-β-CD-ADA within nanoconfinement under external driving forces. Results suggest that β-CD and ADA in p-AA-β-CD-ADA were assembled into nodes in the form of a host and a guest, combining with a "node-rebar-cement" interaction model encapsulating the formation mechanism of these supramolecular polymers. The heightened density of the hydrate layers at the nanoscale pore throats acts as a constraining factor, resulting in restricted mobility and altered dynamics of the supramolecular polymers. During passage through nanopore throats, host-guest molecules within the supramolecular polymer experience noncovalent dissociation. Notably, these supramolecular polymers exhibit remarkable self-healing capabilities, reinstating their assembly state upon traversing pore throats. This work provides a molecular-level comprehension of the potential utility of supramolecular polymers in EOR processes, offering valuable information for the molecular design of polymers employed for EOR in low-permeability reservoirs.
Keyphrases
  • water soluble
  • energy transfer
  • molecular dynamics simulations
  • lymph node
  • squamous cell carcinoma
  • single molecule
  • human health
  • fatty acid
  • mass spectrometry
  • neoadjuvant chemotherapy
  • atomic force microscopy