Login / Signup

Efficient Ab Initio Estimation of Formation Enthalpies for Organic Compounds: Extension to Sulfur and Critical Evaluation of Experimental Data.

Eugene PaulechkaAndrei Kazakov
Published in: The journal of physical chemistry. A (2021)
The efficient protocol for the estimation of gas-phase enthalpies of formation developed previously for C, H, O, N, and F elements was extended to sulfur. The protocol is based on a local coupled cluster with single, double, and perturbative triple excitation [CCSD(T)] approximation and allows rapid evaluation of compounds with sizes computationally prohibitive to canonical CCSD(T) using quadruple zeta basis sets. As a part of model development, a comprehensive review and critical evaluation of experimental data were performed for 87 sulfur-containing organic and inorganic compounds. A compact model with only three empirical parameters for sulfur introduced to address the effects beyond frozen core CCSD(T) was developed. The model exhibits approximately 2 kJ·mol-1 standard deviation over a set of experimental values for a diverse collection of sulfur-containing compounds. The complete basis set version of the model demonstrates a similar performance and requires only one empirical parameter. Multiple problems with the existing experimental data were identified and discussed. In addition, a lack of reliable data for certain important classes of sulfur compounds was found to impede the model generalization and confident performance assessment.
Keyphrases
  • electronic health record
  • randomized controlled trial
  • big data
  • mental health
  • data analysis