Clear cell carcinoma and endometrioid adenocarcinoma are histologic subtypes of ovarian and uterine cancer that demonstrate unique clinical behavior but share common underlying genomic aberrations and oncogenic pathways. ARID1A mutations are more frequently identified in these tumors, in comparison to other gynecologic histologies, and loss of ARID1A tumor suppressor function is thought to be an essential component of carcinogenic transformation. Several therapeutic targets in ARID1A mutated cancers are in development, including EZH2 inhibitors. EZH2 facilitates epigenetic methylation to modulate gene expression, and both uterine and ovarian cancers show evidence of EZH2 over expression. EZH2 inhibition in ARID1A mutated tumors acts in a synthetically lethal manner to suppress cell growth and promote apoptosis, revealing a unique new therapeutic opportunity. Several phase 1 and 2 clinical trials of EZH2 inhibitors are ongoing currently and there is considerable promise in translational trials for utilization of this new targeted therapy, both to capitalize on ARID1A loss of function and to increase sensitivity to platinum-based adjuvant chemotherapies. This review will synthesize the molecular carcinogenesis of these malignancies and their unique clinical behavior, as a foundation for an emerging frontier of targeted therapeutics - the synergistic inhibition of EZH2 in ARID1A mutated cancers.
Keyphrases
- long noncoding rna
- long non coding rna
- gene expression
- endometrial cancer
- clear cell
- clinical trial
- dna methylation
- squamous cell carcinoma
- cancer therapy
- oxidative stress
- copy number
- randomized controlled trial
- small molecule
- endoplasmic reticulum stress
- wild type
- papillary thyroid
- childhood cancer
- phase ii
- rectal cancer
- study protocol