Login / Signup

Design and Synthesis of Polyphenolic Imidazo[4,5- c ]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity.

Kushvinder KumarBinita SihagMadhuri T PatilRahul SinghIsaac G SakalaYoshikazu Honda-OkuboKamal Nain SinghNikolai PetrovskyDeepak B Salunke
Published in: ACS pharmacology & translational science (2024)
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure-function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC 50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b , all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC 50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC 50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC 50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
Keyphrases
  • toll like receptor
  • immune response
  • inflammatory response
  • nuclear factor
  • sars cov
  • early stage
  • endothelial cells
  • coronavirus disease
  • ultrasound guided
  • artificial intelligence
  • data analysis
  • pluripotent stem cells