Novel and Highly Sensitive Electrochemical Sensor for the Determination of Oxytetracycline Based on Fluorine-Doped Activated Carbon and Hydrophobic Deep Eutectic Solvents.
Narumon WannasriPikaned UppachaiKompichit SeehamartSakwiboon JantraseeNuttaya ButwongKanit MukdasaiIllyas Md IsaSiriboon MukdasaiPublished in: ACS omega (2022)
Residues of oxytetracycline (OTC), a veterinary antibiotic and growth promoter, can be present in animal-derived foods; their consumption is harmful to human health and their presence must therefore be detected and regulated. However, the maximum residue limit is low, and consequently highly sensitive and accurate detectors are required to detect the residues. In this study, a novel highly sensitive electrochemical sensor for the detection of OTC was developed using a screen-printed electrode modified with fluorine-doped activated carbon (F-AC/SPE) combined with a novel deep eutectic solvent (DES). The modification of activated carbon by doping with fluorine atoms (F-AC) enhanced the adsorption and electrical activity of the activated carbon. The novel hydrophobic DES was prepared from tetrabutylammonium bromide (TBABr) and a fatty acid (malonic acid) using a green synthesis method. The addition of the DES increased the electrochemical response of F-AC for OTC detection; furthermore, it induced preconcentration of OTC, which increased its detectability. The electrostatic interactions between DES and OTC as well as the adsorption of OTC on the surface of the modified electrode through H-bonding and π-π interactions helped in OTC detection, which was quantified based on the decrease in the anodic peak potential ( E pa = 0.3 V) of AC. The electrochemical behavior of the modified electrode was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Under optimum conditions, the calibration plot of OTC exhibited a linear response in the range 5-1500 μg L -1 , with a detection limit of 1.74 μg L -1 . The fabricated electrochemical sensor was successfully applied to determine the OTC in shrimp pond and shrimp samples with recoveries of 83.8-100.5% and 93.3-104.5%, respectively. In addition to the high sensitivity of OTC detection, the proposed electrochemical sensor is simple, cost-effective, and environmentally friendly.
Keyphrases
- label free
- ionic liquid
- molecularly imprinted
- gold nanoparticles
- solid phase extraction
- human health
- loop mediated isothermal amplification
- risk assessment
- fatty acid
- real time pcr
- gene expression
- quantum dots
- blood pressure
- high resolution
- molecular dynamics simulations
- transcription factor
- magnetic resonance
- highly efficient
- mass spectrometry
- pet imaging
- simultaneous determination
- liquid chromatography
- sensitive detection
- single molecule
- single cell