Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli.
Haijie ZhangFeiyu YuXiaoyu LuYan LiDaxin PengZhiqiang WangYuan LiuPublished in: Microbiology spectrum (2022)
Colistin is one of the last-resort antibiotics for infections caused by multidrug-resistant Gram-negative bacteria. However, the wide spread of novel plasmid-carrying colistin resistance genes mcr-1 and its variants substantially compromise colistin's therapeutic effectiveness and pose a severe danger to public health. To detect colistin-resistant microorganisms induced by mcr genes, rapid and reliable antibiotic susceptibility testing (AST) is imminently needed. In this study, we identified an RNA-based AST (RBAST) to discriminate between colistin-susceptible and mcr-1 -mediated colistin-resistant bacteria. After short-time colistin treatment, RBAST can detect differentially expressed RNA biomarkers in bacteria. Those candidate mRNA biomarkers were successfully verified within colistin exposure temporal shifts, concentration shifts, and other mcr-1 variants. Furthermore, a group of clinical strains were effectively distinguished by using the RBAST approach during the 3-h test duration with over 93% accuracy. Taken together, our findings imply that certain mRNA transcripts produced in response to colistin treatment might be useful indicators for the development of fast AST for mcr -positive bacteria. IMPORTANCE The emergence and prevalence of mcr-1 and its variants in humans, animals, and the environment pose a global public health threat. There is a pressing urgency to develop rapid and accurate methods to identify MCR-positive colistin-resistant bacteria in the clinical samples, providing a basis for subsequent effective antibiotic treatment. Using the specific mRNA signatures, we develop an RNA-based antibiotic susceptibility testing (RBAST) for effectively distinguishing colistin-susceptible and mcr-1 -mediated colistin-resistant strains. Meanwhile, the detection efficiency of these RNA biomarkers was evidenced in other mcr variants-carrying strains. By comparing with the traditional AST method, the RBAST method was verified to successfully characterize a set of clinical isolates during 3 h assay time with over 93% accuracy. Our study provides a feasible method for the rapid detection of colistin-resistant strains in clinical practice.
Keyphrases