Login / Signup

Green Synthesis of Chitosan-Capped Gold Nanoparticles Using Salvia officinalis Extract: Biochemical Characterization and Antimicrobial and Cytotoxic Activities.

Faisal Al-SarrajIbrahim A AlotibiMajid Al-ZahraniRaed S AlbiheyriMashail A AlghamdiNada M NassSawsan Abd-EllatifRaafat T M MakhlofMohammad A AlsaadBayan H SajerHazem S Elshafie
Published in: Molecules (Basel, Switzerland) (2023)
Increasing antimicrobial resistance to the action of existing antibiotics has prompted researchers to identify new natural molecules with antimicrobial potential. In this study, a green system was developed for biosynthesizing gold nanoparticles (BAuNPs) using sage ( Salvia officinalis L.) leaf extract bioconjugated with non-toxic, eco-friendly, and biodegradable chitosan, forming chitosan/gold bioconjugates (Chi/BAuNPs). Characterization of the BAuNPs and Chi/BAuNPs conjugates takes place using transmission electron microscopy (TEM), X-ray spectra, Fourier transform infrared (FT-IR) spectroscopy, and zeta potential (Z-potential). The chemical composition of S. officinalis extract was evaluated via gas chromatography/mass spectrometry (GC/MS). This study evaluated the antioxidant and antimicrobial activities of human pathogenic multidrug-resistant (MDR) and multisensitive (MS) bacterial isolates using the agar diffusion method. Chi/BAuNPs showed inhibition of the MDR strains more effectively than BAuNPs alone as compared with a positive standard antibiotic. The cytotoxicity assay revealed that the human breast adenocarcinoma cancer cells (MCF7) were more sensitive toward the toxicity of 5-Fu + BAuNPs and 5-Fu + Chi/BAuNPs composites compared to non-malignant human fibroblast cells (HFs). The study shows that BAuNPs and Chi/BAuNPs, combined with 5-FU NPs, can effectively treat cancer at concentrations where the free chemical drug (5-Fu) is ineffective, with a noted reduction in the required dosage for noticeable antitumor action.
Keyphrases