Targeted isolation based on metagenome-assembled genomes reveals a phylogenetically distinct group of thermophilic spirochetes from deep biosphere.
Olga V KarnachukAnastasia P LukinaVitaly V KadnikovViktoria A SherbakovaAlexey V BeletskyAndrey V MardanovNikolai V RavinPublished in: Environmental microbiology (2020)
Most microorganisms from deep terrestrial subsurface remain yet uncultured. Recent achievements in recovery of metagenome-assembled genomes (MAG) provide clues for improving cultivation via metabolic reconstructions and other genomic characteristics. Here we report the isolation in pure culture of a thermophilic spirochete with the use of MAGs binned from metagenomes of the deep (>2 km) aquifers broached by two artesian boreholes in Western Siberia. The organism constitutes a minor share in the aquifer microbial community and could not be cultivated by traditional techniques. The obtained two pure culture isolates along with three bacteria identified by MAGs represent a novel family-level lineage in the order Brevinematales. Based on genomic and phenotypic characteristics the novel spirochete is proposed to be classified as Longinema margulisiae gen. nov., sp. nov. within a novel family, Longinemaceae fam. nov. Both cultivated strains, NST and N5R, are anaerobic hemoorganoheterotrophes growing by fermentation of starch and a few sugars. They can form recalcitrant round bodies under unfavourable growth conditions, which survive up to 15 min at 95°C and can revert to the original helical cells. We suggest that the round bodies may facilitate global distribution of this lineage, detected from molecular signaturesand colonization of subsurface environments.