TAK1-binding protein 2 (TAB2) and TAB3 are redundantly required for TLR-induced cytokine production in macrophages.
Tanveer AliHuong Minh NguyenNaeem AbbasOsamu TakeuchiShizuo AkiraToshihiko SuzukiGoro MatsuzakiGiichi TakaesuPublished in: International immunology (2024)
Transforming growth factor-β-activated kinase 1 (TAK1) plays a pivotal role in innate and adaptive immunity. TAK1 is essential for the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB pathways downstream of diverse immune receptors, including toll-like receptors (TLRs). Upon stimulation with TLR ligands, TAK1 is activated via recruitment to the lysine 63-linked polyubiquitin chain through TAK1-binding protein 2 (TAB2) and TAB3. However, the physiological importance of TAB2 and TAB3 in macrophages is still controversial. A previous study has shown that mouse bone marrow-derived macrophages (BMDMs) isolated from mice double deficient for TAB2 and TAB3 produced tumor necrosis factor (TNF)-α and interleukin (IL)-6 to the similar levels as control wild-type BMDMs in response to TLR ligands such as lipopolysaccharide (LPS) or Pam3CSK4, indicating that TAB2 and TAB3 are dispensable for TLR signaling. In this study, we revisited the role of TAB2 and TAB3 using an improved mouse model. We observed a significant impairment in the production of pro-inflammatory cytokines and chemokine in LPS- or Pam3CSK4-treated BMDMs deficient for both TAB2 and TAB3. Double deficiency of TAB2 and TAB3 resulted in the decreased activation of NF-κB and MAPK pathways as well as the slight decrease in TAK1 activation in response to LPS or Pam3CSK4. Notably, the TLR-mediated expression of inhibitor of NF-κB (IκB)ζ was severely compromised at the protein and messenger RNA (mRNA) levels in the TAB2/TAB3 double-deficient BMDMs, thereby impeding IL-6 production. Our results suggest that TAB2 and TAB3 play a redundant and indispensable role in the TLR signaling pathway.
Keyphrases
- nuclear factor
- inflammatory response
- toll like receptor
- signaling pathway
- binding protein
- immune response
- oxidative stress
- lps induced
- transforming growth factor
- wild type
- poor prognosis
- adipose tissue
- cell proliferation
- protein kinase
- tyrosine kinase
- newly diagnosed
- endoplasmic reticulum stress
- amino acid
- insulin resistance
- induced apoptosis
- stress induced