Regulation of cell quiescence-proliferation balance by Ca2+-CaMKK-Akt signaling.
Yi XinJian GuanYingxiang LiCunming DuanPublished in: Journal of cell science (2021)
Compared with our extensive understanding of the cell cycle, we have limited knowledge of how the cell quiescence-proliferation decision is regulated. Using a zebrafish epithelial model, we report a novel signaling mechanism governing the cell quiescence-proliferation decision. Zebrafish Ca2+-transporting epithelial cells, or ionocytes, maintain high cytoplasmic Ca2+ concentration ([Ca2+]c) due to the expression of Trpv6. Genetic deletion or pharmacological inhibition of Trpv6, or reduction of external Ca2+ concentration, lowered the [Ca2+]c and reactivated these cells. The ionocyte reactivation was attenuated by chelating intracellular Ca2+ and inhibiting calmodulin (CaM), suggesting involvement of a Ca2+ and CaM-dependent mechanism. Long-term imaging studies showed that after an initial decrease, [Ca2+]c gradually returned to the basal levels. There was a concomitant decease in endoplasmic reticulum (ER) Ca2+ levels. Lowering the ER Ca2+ store content or inhibiting ryanodine receptors impaired ionocyte reactivation. Further analyses suggest that CaM-dependent protein kinase kinase (CaMKK) is a key molecular link between Ca2+ and Akt signaling. Genetic deletion or inhibition of CaMKK abolished cell reactivation, which could be rescued by expression of a constitutively active Akt. These results suggest that the quiescence-proliferation decision in zebrafish ionocytes is regulated by Trpv6-mediated Ca2+ and CaMKK-Akt signaling.