Login / Signup

Modular Semisynthetic Approach to Generate T Cell-Dependent Bispecific Constructs from Recombinant IgG1 Antibodies.

Irene ShajanLéa N C RochetShannon R TraceyRania BenazzaBianka JackowskaOscar Hernandez-AlbaSarah CianféraniChristopher J ScottFloris L van DelftVijay ChudasamaH Bauke Albada
Published in: Bioconjugate chemistry (2024)
Redirecting T cells to tumor cells by bispecific antibodies is an effective approach to treat cancer, and T cell-dependent bispecific antibodies (TDBAs) are an emerging class of potent immunotherapeutic agents. By simultaneously targeting antigens on tumor cells and T cells, T cells are activated to kill tumor cells. Herein, we report a platform to generate a novel class of 2:1 structure of T cell-dependent bispecific antibody with bivalency for HER2 receptors on tumor cells and monovalency for CD3 receptors on T cells. For this, we use a biogenic inverse electron-demand Diels-Alder (IEDDA) click reaction on genetically encoded tyrosine residues to install one TCO handle on therapeutically approved antibody trastuzumab. Subsequent TCO-tetrazine click with a tetrazine-functionalized CD3-binding Fab yields a 2:1 HER2 × CD3 TDBA that exhibits a tumor-killing capability at picomolar concentrations. Monovalency toward the CD3 receptor on T cells can lower the chances of cytokine release syndrome, which is a common side effect of such agents. Our semisynthetic approach can generate highly potent TDBA constructs in a few chemoenzymatic and synthetic steps.
Keyphrases
  • squamous cell carcinoma
  • papillary thyroid
  • anti inflammatory
  • high throughput
  • lymph node metastasis
  • drug delivery
  • single cell
  • metastatic breast cancer
  • tandem mass spectrometry