FOXO3a Mediates Homologous Recombination Repair (HRR) via Transcriptional Activation of MRE11, BRCA1, BRIP1, and RAD50.
Gozde InciMadhuri Shende WarkadBeom-Goo KangNa-Kyung LeeHong-Won SuhSoon-Sung LimJaebong KimSung-Chan KimJae-Yong LeePublished in: Molecules (Basel, Switzerland) (2022)
To test whether homologous recombination repair (HRR) depends on FOXO3a, a cellular aging model of human dermal fibroblast (HDF) and tet-on flag-h-FOXO3a transgenic mice were studied. HDF cells transfected with over-expression of wt-h-FOXO3a increased the protein levels of MRE11, BRCA1, BRIP1, and RAD50, while knock-down with siFOXO3a decreased them. The protein levels of MRE11, BRCA1, BRIP1, RAD50, and RAD51 decreased during cellular aging. Chromatin immunoprecipitation (ChIP) assay was performed on FOXO3a binding accessibility to FOXO consensus sites in human MRE11, BRCA1, BRIP1, and RAD50 promoters; the results showed FOXO3a binding decreased during cellular aging. When the tet-on flag-h-FOXO3a mice were administered doxycycline orally, the protein and mRNA levels of flag-h-FOXO3a, MRE11, BRCA1, BRIP1, and RAD50 increased in a doxycycline-dose-dependent manner. In vitro HRR assays were performed by transfection with an HR vector and I-SceI vector. The mRNA levels of the recombined GFP increased after doxycycline treatment in MEF but not in wt-MEF, and increased in young HDF comparing to old HDF, indicating that FOXO3a activates HRR. Overall, these results demonstrate that MRE11, BRCA1, BRIP1, and RAD50 are transcriptional target genes for FOXO3a, and HRR activity is increased via transcriptional activation of MRE11, BRCA1, BRIP1, and RAD50 by FOXO3a.
Keyphrases
- transcription factor
- dna damage
- dna repair
- pi k akt
- signaling pathway
- dna binding
- binding protein
- induced apoptosis
- cell cycle arrest
- oxidative stress
- high throughput
- breast cancer risk
- poor prognosis
- type diabetes
- genome wide identification
- genome wide
- amino acid
- metabolic syndrome
- induced pluripotent stem cells
- dna methylation
- endoplasmic reticulum stress
- cell death
- heat shock
- smoking cessation
- heat stress
- single cell