Phytochemical Profiling of Tupistra nutans Wall. ex Lindl. Inflorescence Extract and Evaluation of Its Antioxidant Activity and Toxicity in Hepatocarcinoma (HepG2) and Fibroblast (F111) Cells.
Ashim Chandra RoyAbhinav PrasadIlora GhoshPublished in: Applied biochemistry and biotechnology (2022)
Tupistra nutans Wall. ex Lindl. is a medicinal plant found in the Eastern Himalayan region. Besides being used as a folk medicine for pain and high blood sugar, its inflorescence is consumed as a vegetable. However, its medicinal properties have not been proven in vitro and in vivo till now. Therefore, in this study, we reported the phytochemicals present in the methanolic extract of Tupistra nutans Wall. ex Lindl. inflorescence (METNI) and its comparative effect in liver carcinoma HepG2 cells against non-cancerous murine fibroblast F111 cells. Phytochemical profiling by gas chromatography-mass spectrometry (GC-MS) analysis showed that METNI was rich in unsaturated fatty acids, vitamin E, and anticancer compounds like diosgenin, linoleic acid, and palmitoleic acid. METNI was found to have in vitro antioxidant property as determined by DPPH and pyrogallol methods, and UV protection property as investigated by fluorescence-based and spectrophotometric methods. MTT assay revealed METNI caused significantly more cell proliferation inhibition in HepG2 (IC 50 = 138 µg/ml) compared to F111 (IC 50 = 347 µg/ml) cells. Although in both HepG2 and F111 cells METNI showed significant antioxidant activity, it led to intracellular ROS generation and cell cycle alteration at higher exposure. The obtained results suggest that Tupistra nutans can be a promising application for anticancer drug and skin care product development, but can be harmful if overconsumed.
Keyphrases
- induced apoptosis
- cell cycle
- cell proliferation
- cell cycle arrest
- oxidative stress
- gas chromatography mass spectrometry
- endoplasmic reticulum stress
- healthcare
- fatty acid
- cell death
- signaling pathway
- emergency department
- anti inflammatory
- chronic pain
- pi k akt
- palliative care
- quality improvement
- reactive oxygen species
- spinal cord
- high throughput
- neuropathic pain
- single molecule
- south africa
- gas chromatography