Prognostic Value of Plasma Biomarkers S100B and Osteopontin in Pediatric TBI: A Prospective Analysis Evaluating Acute and 6-Month Outcomes after Mild to Severe TBI.
Laura S BlackwellBushra WaliYijin XiangAli AlawiehIqbal SayeedAndrew ReisnerPublished in: Biomedicines (2023)
Blood based traumatic brain injury (TBI) biomarkers offer additional diagnostic, therapeutic, and prognostic utility. While adult studies are robust, the pediatric population is less well studied. We sought to determine whether plasma osteopontin (OPN) and S100B alone or in combination predict mortality, head Computed tomography (CT) findings, as well as 6-month functional outcomes after TBI in children. This is a prospective, observational study between March 2017 and June 2021 at a tertiary pediatric hospital. The sample included children with a diagnosed head injury of any severity admitted to the Emergency Department. Control patients sustained trauma-related injuries and no known head trauma. Serial blood samples were collected at admission, as well as at 24, 48, and 72 h. Patient demographics, acute clinical symptoms, head CT, and 6-month follow-up using the Glasgow outcome scale, extended for pediatrics (GOSE-Peds), were also obtained. The cohort included 460 children (ages 0 to 21 years) and reflected the race and sex distribution of the population served. Linear mixed effect models and logistic regressions were utilized to evaluate the trajectory of biomarkers over time and predictors of dichotomous outcomes. Both OPN and S100B correlated with injury severity based on GCS. S100B and OPN showed lower AUC values (0.59) in predicting positive head CT. S100B had the largest AUC (0.87) in predicting mortality, as well as 6-month outcomes (0.85). The combination of the two biomarkers did not add meaningfully to the model. Our findings continue to support the utility of OPN as a marker of injury severity in this population. Our findings also show the importance of S100B in predicting mortality and 6-month functional outcomes. Continued work is needed to examine the influence of age-dependent neurodevelopment on TBI biomarker profiles in children.
Keyphrases
- traumatic brain injury
- computed tomography
- emergency department
- young adults
- severe traumatic brain injury
- image quality
- optic nerve
- dual energy
- positron emission tomography
- cardiovascular events
- contrast enhanced
- risk factors
- liver failure
- magnetic resonance imaging
- mild traumatic brain injury
- coronary artery disease
- drug induced
- respiratory failure
- skeletal muscle
- chronic kidney disease
- depressive symptoms
- intensive care unit
- early onset
- cardiovascular disease
- pet ct
- physical activity
- electronic health record