Login / Signup

Expression of heme oxygenase-1 in type II pneumocytes protects against heatstroke-induced lung damage.

Chin-Kun TsengTsung-Ta LiuTsung-Chieh LinChia-Pi Cheng
Published in: Cell stress & chaperones (2020)
Heatstroke (HS) is an acute clinical disease characterized by abnormal hyperthermia and multi-organ dysfunction. Heme oxygenase (HO)-1, also called heat shock protein (HSP)32, is induced by hyperthermia and also plays protective roles in many lung disease models. Based on this phenomenon, we investigated the protective role of endogenous HO-1 in heat-induced lung damage in rats. Male Sprague-Dawley (SD) rats were separated into three groups: (a) normothermic sham, (b) HS, and (c) SnPP (inhibitor of HO-1) pretreatment rats. In the HS group, rats were killed at various time points (1, 3, 6, and 12 h after heat exposure) in order to analyze messenger ribonucleic acid (mRNA) and protein levels. Lung sections were examined for tissue damage and localization of HO-1 using immunofluorescence double labeling. We found that HS induced lung pathology (congested and thickened lung septa). The level of HO-1 mRNA was increased at 1 h, and the protein level peaked at 6 h after heat exposure. Pretreatment with SnPP (tin-protoporphyrin IX, 30 mg/kg, intraperitoneal injection for 1 h before heat exposure) aggravated the lung damage. Furthermore, we demonstrated HO-1 expression in lung type II pneumocytes. Our results suggest that endogenous HO-1 is protective against HS-induced lung damage. Induction of HO-1 may be a potential therapeutic strategy for treating heat-related diseases.
Keyphrases