Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City.
Johan BarthélemyNicolas VerstaevelHugh ForeheadPascal PerezPublished in: Sensors (Basel, Switzerland) (2019)
The increasing development of urban centers brings serious challenges for traffic management. In this paper, we introduce a smart visual sensor, developed for a pilot project taking place in the Australian city of Liverpool (NSW). The project's aim was to design and evaluate an edge-computing device using computer vision and deep neural networks to track in real-time multi-modal transportation while ensuring citizens' privacy. The performance of the sensor was evaluated on a town center dataset. We also introduce the interoperable Agnosticity framework designed to collect, store and access data from multiple sensors, with results from two real-world experiments.