Punica granatum (Pomegranate) Peel Extract Pre-Treatment Alleviates Fenpropathrin-Induced Testicular Injury via Suppression of Oxidative Stress and Inflammation in Adult Male Rats.
Ali B JeburRaghda A El-SayedMohamed M Abdel-DaimFatma M El-DemerdashPublished in: Toxics (2023)
Fenpropathrin (FNP) is one of the commonly used insecticides in agriculture and domestically, leading to environmental and health problems. The goal of the current investigation was to determine how well pomegranate peel extract (PGPE) could prevent the testicular toxicity and oxidative stress induced by FNP. Four groups of male Wistar rats were randomly assigned: negative control (corn oil), PGPE (500 mg/kg BW), positive control (FNP; 15 mg/kg BW, 1/15 LD 50 ), and PGPE + FNP. For four weeks, the rats received their doses daily and orally via gavage. The major phytochemical components (total phenolic, flavonoids, and tannins contents) detected in PGPE by GC-MS included ellagic acid, hydroxymethylfurfurole, guanosine, and pyrogallol with high total phenolic, flavonoids, and tannin contents. FNP-treated rats showed a marked elevation in testicular levels of thiobarbituric acid-reactive substances, hydrogen peroxide, and protein carbonyl content, as well as the activity of aminotransferases and phosphatases. Meanwhile. a significant decline in body weight, gonadosomatic index, glutathione, protein contents, enzymatic antioxidants, and hydroxysteroid dehydrogenase (3β HSD, and 17β HSD) activity was observed. In addition, significant alterations in testicular P53, Cas-3, Bcl-2, IL-β, IL-10, testosterone, follicle-stimulating and luteinizing hormones, and sperm quality were detected. Furthermore, biochemical and molecular changes were corroborated testicular histological abnormalities. Moreover, PGPE-pretreated FNP-intoxicated rats demonstrated considerable improvement in the majority of the studied parameters, when compared to FNP-treated groups. Conclusively, PGPE provided a potent protective effect against the testicular toxicity caused by FNP, due to its antioxidant-active components.
Keyphrases
- oxidative stress
- germ cell
- hydrogen peroxide
- diabetic rats
- body weight
- dna damage
- ischemia reperfusion injury
- induced apoptosis
- mental health
- healthcare
- nitric oxide
- crispr cas
- anti inflammatory
- public health
- climate change
- high glucose
- physical activity
- replacement therapy
- protein protein
- zika virus
- human health
- drug induced
- amino acid
- young adults
- heat shock
- single molecule
- genome editing
- endothelial cells
- signaling pathway
- stress induced
- health promotion